
MATHEMATICAL MODEL OF THE OSCILLATORY CYCLE ASSOCIATED WITH NONSTEADY 

INTERACTION OF A SUPERSONIC JET WITH A BARRIER 

V. G. Dulov UDC 533.6.011 

INTRODUCTION 

When a supersonic jet interacts with a barrier, a complex flow pattern is created with 
a branched system of compression shocks containing a region of local subsonicflow, contact 
discontinuities, and flow zones with large gradients of the parameters ~ee Fig. l, in which 
the solid lines represent shock fronts and the dashed lines represent contact discontinuities] 
Numerous experimental data (see, e.g., [i, 2]) indicate that for a certain bounded set of 
initial parameters a physical phenomenon occurs, which has not been adequately studied in the 
theoretical aspects, namely, the shock configuration of the jet loses stability, the steady 
flow near the obstacle changes spontaneously into nonsteady flow, and a self-sustaining 
strongly fluctuating wave process develops directly in front of the barrier. 

The hypothesis has been advanced [3] that a definite role is played in the mechanism of 
this effect by an internal turbulent wake, which periodicallyemerges and decays behind the 
branch line of the shock fronts. This wake is formed when immediately after the triple 
point there occurs not one, but two contact discontinuities, between which is formed an iso- 
baric region filled with gas in the rest state relative to the shock branch point. 

Under steady-state conditions a wake cannot occur after the triple point, and in this 
sense the fact that it is there may be regarded as the primary cause of the transition from 
steady to nonsteady flow. In the present article we propose a mathematical model of this 
effect, based on the hypothesis of a periodically emerging and decaying wake. 

The flow fluctuations are accompanied by appreciable displacements realtive to the non- 
uniform background of the strong central shock, whereupon strong entropy waves are transmitted 
through the postshock jet stream. Here we witness a phenomenon analogous to a nonsteady 
entropy layer. 

Several discrete oscillatory tones are usually observed, differing considerably in fre- 
quency. The low-frequency fluctuations can have a very large amplitude and are of primary 
concern in the investigation. The high-frequency amplitudes are small, and frequency esti- 
mates show that these oscillations are associated with processes propagating with the speed 
of sound. 

The first step in construction of a model of the low-frequency cycles is to disregard 
the role of high-frequency oscillations and their distorting influence on the evolution of 
all processes with time. This condition is realized when the sound velocity is considered 
to be infinite in the subsonic region after the central shock. In this approximation only 
entropy waves upset the quasisteady state of the process in the subsonic region. 

w The analytical description of the entropy waves rests on the following assumptions. 
The relatively small region of essentially three-dimensional flow in front of the barrier is 
treated in the integral aspect as a simulation discontinuity on the basis of general conserva- 
tion laws [4]. Then in the flow zone between the central compression shock and cross sec- 
tion I--i (Fig. 2) we can use the one-dimensional approximation; between cross sections l--i 
and 2--2 the flow has a distinct three-dimensional behavior and admits quasisteady description 
by means of general conservation laws. The gas flowing across the central shock moves to 
cross section i--i in a channel with cross-sectional area F, which varies along the length 
of the channel and with time. The equations of motion of the gas in this channel are written 
in the form 

OoF Ovpf _ _  O, Ov O v  i Op OS OS 
at + o~ -3-i- + v ~ o a~' a--i + v ~ = O, 61.. 1~ 
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where F = F(t, x), x is the coordinate along the symmetry axis of the jet, p is the density, 
v is the velocity, p is the pressure, and S is the entropy. According to the assumption that 
the quasisteady flow in the subsonic region after the central shock is upset only by entropy 
waves, we assume that the pressure depends only on the time, p = p(t), ~p/~x = 0. Then the 
general solution of the system (i.i) has the form 

,g ' (v ,  ~) = O, ~ = vt  - -  x,  S = S(E) ,  ( 1 . 2 )  

p = p( t ) ,  pVkF( .9  " ,  - -  .Y'~t) = g(k) ,  

where'-, S, p, and $ are arbitrary functions of their arguments and k is the specific heat 
ratio. It follows from (1.2) that the characteristics % = const are straight lines forming 
convergent or divergent bundles. If all the characteristics of a bundle pass through a com- 
mon point (usually outside the flow field), we call such an entropy wave centered. Let a 
wave be centered at a point with coordinates (xi, ti). Then at this point the first relation 
(1.2) cannot be solved explicitly for the velocity v, because characteristics with different 
velocity values converge at the given point. Consequently, 

,.,a" i~=~ i + y '~  I~=~ ~ ti = O. 
I t= t  i I t=t i  

Hence 

v = ( x  - x ~ ) / ( t  - t O ,  (Z. 3) 
and the last relation (1.2) is rewritten 

p l / h Y ( l  - -  t / t i )  = ~(~) .  ( 1 . 4 )  

Thus, relations (1.3) and (1.4) determine a centered wave. 

We now consider the special case in which the cross section depends only on the time, 
F = F(t), i.e., the generatrices of the cylindrical walls of the channel are parallel to the 
symmetry axis. It follows from the last relation (1.2) for F = F(t) that the velocity v obeys 
Eq. (1.3) and 8 E const, i.e., in this channel the entropy wave is a special case of a cen- 
tered wave. 

w Without reiterating the arguments set forth in [3], we assume that the wake ends in 
an abrupt change of flow geometry and that the mass of the gas in the evolving wake is main- 
tained mainly in its tail part, predominantly by gas flowing across the central shock ~ig. 
3). The region of abrupt variation of the flow parameters may be likened to a certain ficti- 
tious discontinuity, the set of parameters subject to discontinuity including the cross sec- 
tion of the flow. We presume in keeping with our earlier assumptions that the pressure re- 
mains intact at such a discontinuity. Inasmuch as the variation of the parameters is sudden, 
but strictly speaking continuous, we regard the entropy as equal on either side of the shock. 
Consequently, the density is also continuous in the main flow, but in the wake it has a dif- 
ferent value. The energy conservation principle is satisfied automatically under these as- 
sumptions, and for the two mechanical laws (conservation of mass and momentum) we can write 
the equations 

FIp(vl -- N) + pc(F2 -- F1)(D -- N) = p(v2 -- N)F~, (2.1) 

F19(n -- N) 2 + pc(F~ -- FI)(D -- N) ~ = p(~ -- N)2F2, 

in which the subscripts refer to the corresponding cross sections (see Fig. 3), P is the 
density in those cross sections, N is the translational velocity of the tail of the wake, Pc 
is the density in cross section l--1 of the wake, and D is the translational velocity of the 
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central compression shock (all particles of the wake move with this velocity at time t). 
From (2.1) we obtain 

N = v~ (v  2 - -  D )  - -  / ( v  1 - -  D )  v 1 
v~ - -  D - -  f (v~ - -  D) ' ( 2 . 2 )  

where f = Fz/F~ and D is computed at the same time at which the fictitious (conditional) 
discontinuity is analyzed. 

w The evolution of the wave structure of the nonsteady jet zone within the limits 
of one period can now be described according to the following scheme. Suppose that at a 
certain intermediate position of the central shock a conditional discontinuity occurs in the 
parameters of the gas, its decay causing that shock to move in the direction away from the 
barrier and toward the nozzle, with a certain finite velocity Do < 0. The shock velocity 
decreases with time and vanishes at a certain instant, after which the shock begins to move 
in the opposite direction toward the barrier~ The strength of the central shock decreases 
monotonically. Under these conditions a wake can develop after the triple point. If prior 
to decay a wake existed after the shock branch point, then at the instant of decay it sepa- 
rates from the shock configuration and is entrained by the flow, moving with the velocity of 
the latter. 

Thus, after a small time interval following decay the flow pattern shown schematically 
in Fig. 4 emerges. The gas stream between the moving central shock and the barrier can 
divide into three parts. The first part is between the front of the central shock and cross 
section i--i, where the new evolving wake ends (region I), the second is between cross sec- 
tions i--i and 2--2 at the end of the separated flow-entrained wake (region II), and finally 
region III is the part between cross section 2--2 and the conditional barrier-simulating dis- 
continuity. The boundary with the high-pressure flow across the two curvilinear shocks may 
be regarded in the given scheme as practically rectilinear and parallel to the jet axis. 
Consequently, in region III, where there is no wake, F2 # F(t), and the flow is a special 
case of a centered wave with B = B= = const. In region III it is the mass of the gas en- 
trained in the wake, rather than the shape of the separated wake, that is significant. In 
this zone, therefore, it may also be assumed that the wake is bounded by cylindrical sur- 
faces with rectilinear generatrices, i.e., F~ = F3(t), and the entropy wave is centered with 

= ~ = const. In region I the inner boundary of the wake is essentially curvilinear. To 
take this fact into account we must augment the arbitrariness of the solution by one more 
arbitrary function of one argument, i.e., here the flow can also be described by a centered 
wave, but with ~ = ~z(X) # const. As the wake in region I evolves it attains the cross sec- 
tion where the barrier is situated, i.e., wave I encompasses the entire region between the 
central shock and the barrier. If the wake is sufficiently well developed at this time, the 
annular gap between the outer high-pressure flow and the edge of the barrier is filled with 
the gas forming the wake, inducing complete flow stagnation immediately in front of the bar- 
rier. The lower boundary of the wake, i.e., the contact discontinuity there, extends beyond 
the surface of the barrier. These two facts (complete flow stagnation in front of the bar- 
rier and extension of the contact discontinuity beyond the surface of the barrier) have been 
stated repeatedly in experiments, with a certain astonishment, because it is customarily 
assumed that one contact discontinuity exists behind the shock branch point, making its emerg- 
ence beyond the surface of the barrier seem unnatural. 
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The stagnation of the flow in front of the barrier can be simulated by a shock wave 
generated in front of the barrier (line 4 in Fig. 5). At a certain instant this shock en- 
counters the central shock. A conditional discontinuity occurs in the parameters of the gas, 
its decay setting up the proper conditions for repetition of the cycle. At the instant of 
decay the wake separates from the triple shock configuration , and the proper conditions are 
set up for inception of a new wake. The separated wake is entrained by the flow, moving with 
the velocity of the latter, i.e., the closing cross section of this wake (2--2 in Fig. 4) is 
a contact discontinuity, which is separated upon decay. The entropy wave behind the shock 
emanating from the barrier is centered in the cross section where the barrier is situated, 
at the point where the contact discontinuity arrives. Before the arrival of this disconti- 
nuity the velocity in the cross section in front of the barrier is equal to zero and abruptly 
acquires a finite value at the instant of arrival of the contact discontinuity. On the right 
side of Fig. 5 is shown an experimental streak photograph of the process.* Fair qualitative 
and quantitative agreement obtains between the calculated and experimental patterns. 

w Let us denote by i the distance from the nozzle orifice to the barrier. Let x c be 
the analogous distance to the cross section in which successive decays of the conditional 
discontinuities take place~ We assume that in the x, t planethe point O60, 0) corresponds to 
a certain intermediate decay. In Fig. 5, line 1 represents the path of the central shock 
front, line 2 the path of the "tail" of the evolving wake, and line 3 the path of the contact 
discontinuity. We now derive equations for the main characteristics of the cycle. In region 
I the velocity is 

v~ = (x - xl)/(t - tO. (4. i) 

Let D be the translational velocity of the shock. Assuming that the distributions of all the 
parameters along the axis of the free jet are given, we use the compatibility conditions at 
the shock front and expression (4.1) to deduce from the equation dx/dt = D a nonlinear first- 
order ordinary differential equation in the function x = xB(t), describing the path of the 
central shock in the x, t plane. To obtain finite relations we invoke the hypersonic approxi- 
mation, since the Math number downstream from the shock is usually large. We write the mass 
conservation principle for a normal shock in the vicinity of the symmetry axis: 

p(v - o) -- p1(vl - D) 

*Obtained by A. P. Petrov at the Institute of Theoretical and Applied Mechanics, Siberian 
Branch, Academy of Sciences of the USSR. 
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(p is the density, v is the downstream velocity, and vx is the upstream velocity relative 
to the shock); for large Mach numbers Pt/P = (k + l)/(k-- i), v ~ v m, where v m is the 
N~imum steady-flow velocity. Consequently, 

D ,.~" ----f--~k+~ --~J-Vm (4.2) 

o r  

Ox k + t z - -  x 1 k - - 1  
Ot 2 t - -  tx 2 - -  U r n .  

Hence, 

x = x~(0 = x~ - vm(t~ - t) + c(tl - t)(h+1)/= 

(c is an arbitrary constant). The shock velocity at an arbitrary time is 
h--i 

d x s  k 4 -  t 
D - -  d-T - -  Ym - -  T c ( t  t - -  t) 2 

( 4 . 3 )  

(4.4) 

Consider the motion of the "tail" of the evolving wake (cross section l--I in Fig. 4 or line 
2 in Fig. 5). Let F be the area of the central shock. By the postulated rectilinearity of 
the boundary of the "outer" high-pressure flow F2 = F. Writting expression (1.4) for the 
cross section immediately after the central shock and for cross section 2--2 (see Fig. 3) in 
the "tail" of the wake and then dividing the first result by the second, we obtain 

"7 (~) 
~, (~,) t - -  t l  

1~2 t ( ~  ' " (4.5) 
l-- 

t~ 

where t(X) is the inverse of the function X(t) and t(X) is the same for cross section 2-2, 

Z, ( t )  x ~  (t) - -  x~ z B (t) t l  - txt 
t - - t ,  t -- X B (t)  t - -  t t 

Inasmuch as ~2 = const, relation (4.5) determines the function ~x(%). Forming the ratio of 
Eq. (1.4) for cross sections i--i and 2--2 (see Fig. 3), we obtain 

~2 t - - t i t 2  ( 4 . 6 )  
/ = ~t (~) t - -  t/tt" 

In light of (2.2), (4.5), and (4.6); the equation dx/dt = N represents a nonlinear first- 
order differential equation of rather complex structure for the fucntion x = X(t), the numeri- 
cal integration of which is made difficult by the fact that the equation contains a great 
many parameters. We can construct a simple approximate solution of this equation by utiliz- 
ing additional information acquired in the course of calculation of the oscillatory cycle; it 
is required to determine the coordinates and state parameters for at least three points of 
the unknown path, which are denoted in Fig. 5 by the letters O, P, and Q. From expression 
(2.2) we can compute at these points the corresponding values of the velocity of the "tail" 
of the wake, No, Np, and Nq. With the aid of a Lagrange interpolation polynomial we can ap- 
proximately reconstruct N from these values: 

( t q - - t ) ( t p - - t )  t ( t p - - t )  ~ • t ( t q - - t )  
N ~ ,  tqtp No  + tq (tp - -  tq) '" q ~ tp (tq - -  tp) N p .  

Here the inuices refer to the variables at the corresponding points. Integration of the rela- 
tion dx/dt = N yields the function X(t). More precisely, 

z = x(t~, t , ,  tq ,  t p ,  xr t) ,  6 4 . 7 )  

where the parameters contained by this function are listed. 

In region III the velocity is 

v ,  = ( x  - x ~ ) / ( t  - t ~ ) ,  ( 4 . 8 )  

and at the point L where the closing cross section of the separated wake arrives the velocity 
of the main flow changes abruptly, i.e., at this point there must be a centered wave with the 
velocity distribution (4.8). Therefore, 

x ~  = 1 - -  x o ,  t~  = ( l  - -  x ~ ) l v 3 k ,  ( 4 . 9 )  
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where the velocity vak on the last characteristic of region III is equal to the velocity 
after decay of the discontinuity upstream from the central shock moving with velocity Do. 

At time t = tp the evolving wake attains the barrier, complete stagnation takes place 
on the part of the flow across the central shock, and a reflected shock is formed, moving 
away from the barrier. According to the compatibility conditions for this shock its transla- 
tional velocity has the following form on the assumption that it is relatively weak: 

v~+v~ 4 alvl--a~ 
d~ 2 k --l v., -- ,~ 64.10) 
dt 1 4 a 1 

k - -  1 vl _ v" 3 

Here v~ and a l  are the flow velocity and sound velocity ahead of the shock (flow in region I), 
! 

and Va is the velocity in the region analogous to III but going over to the next cycle: 

x - - I + x  c 

where T is the cycle period. From (4.10) we obtain a nonlinear first-order differential 
equation for the path of the shock front. In all streak photographs of the processes the 
path of the shock front is practically rectilinear, and the lifetime of this shock is small. 
To simplify the notation, therefore, we replace its velocity by the average value ~Np + Nk)/ 
2, where Np is the velocity of the reflected shock at the instant of its inception and N k is 
the same velocity at the instant of encounter with the central shock. Both velocities are 
computed according to (4.10). Now the path of the shock front is approximately described by 
the equation 

N k + N p  (t - -  tp ) .  (~4.11)_ x = l - - x o  + ~ .  

w We now discuss a sequence of computational procedures on the basis of the qualita- 
tive scheme described above. This sequence rests on the exact solution of the boundary-value 
problems within the context of the stated assumptions. At the instant just before encounter 
of the central shock with the reflected shock moving according to the law ~.ii) the postshock 
pressure pl k is computed according to the well-known expression 

. , .  r.<:o>-o,], . _ ,  
j 

in which v(xc), a(Xc) ,  and p(x c) are specified functions characterizing the distributions of 
the flow velocity, sound velocity, and pressure along the axis of the free jet ~ee, e.g., 
[5]) and Di is the translational velocity of the central shock at time t = T. According to 
(4.4), 

k--i 
k+1 

D x = v ~  2 c ( h - - T )  2 

Let S, k and a, k be the entropy function and sound velocity computed at the same time upstream 
from the central shock: 

,/- 
S1~=p-~c) L-~h d ~ ' p ( % ) k k ~ i /  ' a(%) ~'Vp(~c)  k+i" 

We use expression (4.10) to find the velocity, 

N k 

v l h - ~  Yah - 4 vl  h - -  e l k  

2 k - - i a l k V l k - -  Yak z 1 
, Vlk  ~--- t'~-'-T--T" 

t 4 elk  
k - - l v l k - -  va~ 

Inasmuch as the velocity of the gas behind the reflected shock at the time of its inception 
is zero, 

vtrt 4 a vln--"  atr~ 
2 k - -  i IH v m  

NH ---- 
l 4 alg  
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The procedure for computation of the sound velocity ahead of the reflected shock at time t = 
tp is no simple matter. It is necessary to determine the pressure P~H and the entropy func- 
tlon at this point; P~H is equal to the pressure upstream from the central shock at time t = 

tp : 

Pin 2k [ v l p - - D p ] 2  k - - i  

p ( % p } -  k - ? t  c "~(z-~p) J k'-i-t; (5.3) 

Xp - -  x 1 k 4- I , .  
x c p = x c  + xp ;  v ~ p =  t p - - q  ' D p = v m  ~ c ( q - - t p ) ( k - l ) / 2 ;  ( 5 . 4 )  

x p  = x~( tp )  = x~ - v , , ( h  - tp)  + c ( h  - tp)(~+~)/~. (5.5) 

The entropy function at point P is equal to the value of this function at point R behind the 
central shock (see Fig. 5), where the broken line RQP is the path of a particle arriving at 
point P. The equations for the segments of this line have the form 

X r - -  X q  = U r ( t  r - -  tq), v r = (Xx - -  Xr ) / ( t l  - -  tr); ( 5 . 6 )  

1 - -  X c - -  X q  = Uq (tp - -  tq),  Vq = (Xq - -  x f ) / ( t q  - -  tf); ( 5 . 7 )  

where xa and ta are constants in the equation for the velocity in region ll and 

v2 = (x  - -  x,_)/(t - -  t , ) .  

Moreover, according to (4.3), 

and from (4.7) we obtain 

x r = x~ - -  Vm(t l  - -  t~) + c(h --  G) (k+~)/~, (5.8) 

x q  = z(tl, i~_, tq, t p ,  t0). ( 5 . 9 )  

T hese  r e l a t i o n s  a r e  s u f f i c i e n t  f o r  t h e  d e t e r m i n a t i o n  o f  S~H and a~H: 

S t H = S ( D r ) '  D r = v m  2 c ( t x - - t r ) ( ~ + t ) / 2 '  ( 5 . 1 0 )  

a t~  = a (PlH, S~H). 

From (4.11) and the condition x = 0 at t = T on the path of the reflected shock we 
deduce 

T = tp - -  2 ( / - -  x e ) / ( N h  t NH).  ( 5 . 1 1 )  

In the steady-state oscillatory regime the decay of a conditional discontinuity at 
points 0 or K(O, T) must produce only amplification of the central shock and the inception 
of a contact discontinuity, i.e., immediately after decay the pressure can be computed by 
two techniques. On the one hand, this pressure is the pressure after the instantaneously 
amplified central shock, 

Pak 2k [ ($c) -- Do] ~ k - - t  (5o12)_ 
J k+t" 

On t h e  o t h e r  hand ,  P3k i s  e q u a l  t o  t h e  p r e s s u r e  b e h i n d  t h e  r e f l e c t e d  shock  j u s t  p r i o r  t o  
d e c a y ,  

Pa__h 2 k ( V l h - - N h )  2 k - - I  ( 5 1 3 )  
Plh ~ - ~  alk k -'I- t" 

To c a l c u l a t e  t h e  v a l u e s  o f  $2 and ~l(Xk) = ~k a t  p o i n t  K b e f o r e  d e c a y  we make use  o f  r e l a -  
t i o n s  (1.4) and (4.5): 

~ t l h ~  t - -  T/to_ 
g~ = ~1 (0) = P3~ ~' o, f ~  = t - -  T/ t~ ~ "  ( 5 . 1 4 )  

w For  t h e  30 unknown p a r a m e t e r s  o f  t h e  c y c l e  x t ,  ca ,  vtk~ yap ,  Do, D~, yak ,  c ,  T ,  

t~, tq, tp, Dp, Xc, ta, Pxk, Pak, ~2, Bk, S1k, x~, a~ k, a~ H, PIH, Xp, Xr, tr, xr S~H, and 
D r we obtain from the foregoing equations a closed system of relations (see Fig- 5). We 
write Eq. (4.1) at points K and P, relations (1.4), (4.2)-(4.4) at points O and K, and (4.7) 
at point P. To the resulting nine equations we add (4.9), (5.1), (5.2)-(5.14), and the condi- 
tion dF/dt = 0 at D = 0. The total number of these equations is 30, i.e., the number of un- 
known parameters. Since the majority of these relations are explicitly solvable or are 
easily solved for the unknowns, the system is easily reduced to a system of five nonlinear 
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equations in the unknowns Xc, tt, tp, tq, and t r. This system is too bulky to write out 
here. The system can be further simplified on the basis of partial linearization, which 
follows as a special result from the qualitative analysis carried out above. 

w For the realization of the periodic process it is necessary that within a single 
cycle the central shock decay monotonically, so that the postshock velocity vt will increase 
monotonically. Consequently, the entropy wave in region I must be centered at a point located 
in the first quadrant in the x, t plane, i.e., x~ > 0, t~ > 0. Also, since infinite values of 
the postshock velocity are inadmissible, tt ~T. If t~ = T, a gas sink will exist at the 
point K(0, T), and this is physically unrealistic. Therefore, the equality tt = T (one of 
the roots of the system) is inadmissible. So we have as a necessary condition for realiza- 
tion of the oscillatory process the strict inequality t~ > T. Inasmuch as the velocities at 
points 0 and L (Fig. 5) are identical, we have Vk3 = x:/t: = x2/t2 = (l -- Xc)/ts, and all 
three entropy waves (in regions I, II, and III) are centered at points situated on the single 
line passing through points 0 and L. The area of the central shock at the beginning (point 
0) and at the end (point K) of the cycle is the same and equal to Fo. From (1.4) we obtain 

ilk ~ = Ptk Fo ( l  - -  T__._~ 
t I ]" 

From this result, using (5.14), we obtain 

p i 'k 
3h = (i + Ap) I/h = I -- __T (7. I) 

where Ap is the relative intensity of the reflected shock before decay. Assuming that the 
reflected shock is weak, we obtain from (7.1) correct to second-order small quantities 

G~--kT:'Ap, 

i.e., t2 must be a large negative number. The entropy wave in region II is centered in the 
third quadrant in the x, t plane. The quantities tp and tq enter into the analytical relations 
in the form 1 -- tp/t2 and 1 -- tq/t2. Linearization is admissible under the assumptions tp/ 
t2 << i and tq/t2 << i. The smaller the ratio T/t~ relative to unity the more slowly will 
the velocity upstream from the central shock vary and the larger will be the period T of the 
oscillatory cycle. For low frequencies T/t~ << i, and the analogous statements pertinent to 
this latter inequality are possible. 

The domain of existance of the roots corresponds to the domain of existence of the self- 
sustaining oscillatory process. The proposed mathematical model has not been methodically 
tested. The published experimental results pertaining to the wave structure of the cycles 
are scant and are by and large of a qualitative nature. 
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